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Key factors in determining
the lunar atmospheric distribution

1. Temperature

= Atmospheric density
increases with
decreasing
temperature.

= Lunar surface
temperature
decreases with solar |
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Key factors in determining
the lunar atmospheric distribution

VOLATILE SOURCES AND PROCESSES
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2. Source distribution

= Lunar exosphere is transient

= Lifetimes of particles
from hours to days

= Particles make ~100
hops

= Constant competition
between source and loss
processes

= Lunar exosphere originates
at the surface

= Outgassing, sputtering,
vaporization, desorption
release processes all act
near the surface
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Key factors In determining
the lunar atmospheric distribution

3. Surface encounters

= The surface is the exobase
* Interactions among “airborne” particles are unlikely
» Interactions with surface grains are most likely
= Adsorption
= Active sites
= Temporary cold traps
= Permanent cold traps
= Re-release
= Bounce elastically
* Thermally accommodate
= Partial accommodation
* Inelastic bouncing
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The lunar surface/atmosphere interface

is a crucial part of the lunar atmosphere.
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Monte Carlo Atmosphere Model

* Follows large number of particles from emission
in atmosphere to eventual loss from system
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\/ photoionization:

= Species (so far)
= H, H,, He, OH, H,O, Na, Ar
* Release mechanism
= Position and velocity
= Surface interaction
= Rerelease velocity
» Trajectory calculation
= Gravity
= Radiation pressure
= Loss processes
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Uses of a Monte Carlo Atmosphere Model

* Developed with Rich Vondrak and Rosemary Killen
= The Monte Carlo exosphere model can be:

* Used to study the effects of different physical
processes on atmospheric composition and
distribution

= Paired with upcoming observations to provide
insight into planetary surface, atmosphere, and
plasma interactions

= Applied to various bodies (Moon, Mercury)
* Improvements are ongoing
* Requests are welcome
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Investigation of sodium and sticking

= Assume a photon-stimulated desorption source
" Include radiation pressure
* Try 3 cases of surface interactions:

= REBOUND: particle is reemitted with the same
velocity it had when it encountered the surface

* THERMAL.: particle is reemitted with a velocity
selected from the distribution associated with the
local surface temperature

* NIGHT STICKING: particles hitting the night side
adsorb until they reach dawn, where they are
reemitted with a thermal velocity

* Plot scale is in log(N/latitude/longitude)
APL
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Polar view
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Conclusions

= Rebounding particles fill in the nightside atmosphere
faster than thermalizing particles

* Thermalizing particles extend farther beyond the
terminator than adsorbing particles

» Total atmospheric contents are similar for each case

= Dayside density for rebounding particles is lowest
dayside density for these cases

= Competition between source rate, transportation time,
and loss rate affect nightside density

= A dawn enhancement is readily apparent when the night
surface acts as a sink
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What happens when an atmospheric
particle encounters the surface?

When particles stick on the nightside,
particles that are driven across the dawn
terminator to the nightside are re-released
at dawn in several hours.

In contrast, the particles that are driven
across the evening terminator stick to the
nightside for the long lunar night and are
re-released at dawn.

Thus, the peak atmospheric density occurs
at dawn.

There is an asymmetry between dawn and
dusk that depends on the efficiency of
sticking and the re-release mechanism.
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How does cold trap size affect
atmospheric distribution?

= A greater fraction of migrating
particles condense in a larger cold

trap, almost in proportion to the area. s Fraction of particles in each cold trap
* The Margot et al. [1999] estimate of T g
total area in lunar shadow is smaller 06| { gz ]

than the Bussey et al. [2003] estimate.
Particularly, there is a great difference
in the estimates for the PSR area in
the northern hemisphere, where
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high northern latitude than for a larger
northern polar cold trap.
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What volatiles do we expect to be
adsorbed to the nightside?

* This shows the adsorbed nightside concentration of
water vapor from our model.

= Spatial distribution of loss processes, which can feed
additional source processes

Adsorbed Water Concentration on Nightside
dusk

dawn

midnight
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How does release distribution relate to
final distribution?
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